Abstract

Bio-jarosite, an iron mineral synthesized biologically using bacteria, is a substitute for iron catalysts in the Fenton oxidation of organic pollutants. Iron nanocatalysts have been widely used as Fenton catalysts because they have a larger surface area than ordinary catalysts, are highly recyclable, and can be treated efficiently. This study aimed to explore the catalytic properties of bio-jarosite iron nanoparticles synthesized with green methods using two distinct plant species: Azadirachta indica and Eucalyptus gunni. The focus was on the degradation of dicamba via Fenton oxidation. The synthesized nanoparticles exhibited different particle size, shape, surface area, and chemical composition characteristics. Both particles were effective in removing dicamba, with removal efficiencies of 96.8% for A. indica bio-jarosite iron nanoparticles (ABFeNPs) and 93.0% for E. gunni bio-jarosite iron nanoparticles (EBFeNPs) within 120 min of treatment. Increasing the catalyst dosage by 0.1 g/L resulted in 7.6% and 43.0% increases in the dicamba removal efficiency for EBFeNPs and ABFeNPs with rate constants of 0.025 min−1 and 0.023 min−1, respectively, confirming their catalytic roles. Additionally, the high efficiency of both catalysts was demonstrated through five consecutive cycles of linear pseudo-first-order Fenton oxidation reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.