Abstract
Three-dimensional (3D) printing parts with excellent resolution and high performance are of great significance for scientific and engineering applications. In this study, a novel photocurable cellulose acetate butyrate (PC-CAB) resin was synthesized for continuous liquid interface production (CLIP) to construct 3D objects with high resolution, tailored mechanical properties, excellent chemical resistance and thermal stability. Particularly, the tensile and flexural strength of the CLIP 3D printed specimen could reach 44.67 and 64.53 MPa, respectively. Their solvent resistance against various organic solvents and strong acidic/basic solutions was evaluated. As expected, the 3D prints could well maintain their structural integrity and exhibited very low swelling ratios owing to the photo-induced chemical crosslinking structure. Notably, even after immersion in methylene chloride or 1.0 M acid/alkali for 3 h, the 3D prints still showed excellent mechanical and thermal properties. Further study demonstrated that when PC-CAB in the CLIP ink was optimized to 20 wt% while the photoinitiator (PI) was 0.5 wt%, complex-structured 3D printed objects with high surface quality could be obtained under specific printing parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.