Abstract

Phosphoranyl radicals are essential mediators to bring about new radicals but often produce a stoichiometric amount of phosphine oxide/sulfide waste. Herein, we devised a phosphorus-containing species as a radical precursor, but without the generation of phosphorus waste. Accordingly, a catalyst-free synthesis of phosphinic amides from hydroxyl amines and chlorophosphines via P(III) to P(V) rearrangement is described. Mechanistically, it may involve the initial formation of a R2N-O-PR2 species that undergoes homolysis of N-O bonds and subsequent radical recombination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call