Abstract
Artificial genetic networks constitute a powerful tool to achieve various biotechnological objectives. In this work, we propose the modification of an oscillatory genetic network, known as the repressilator, to drive synthesis of poly(3hydroxybutyrate-co-3hydroxyvalerate) (PHBV) block copolymer chains in recombinant Escherichia coli cells. To study the feasibility of this idea, we developed a detailed mathematical model describing the dynamics of the genetic network, which drive the formation of monomer units that are subsequently incorporated into actively growing block copolymer chains. Extensive simulation studies have shown that appropriate choice of the molecular characteristics of the network and manipulation of extracelllular conditions lead to tight control of both the micro- and macro-structures of the resulting block copolymer chains. Thus, the model can guide network design aiming at producing block copolymer structures with desirable characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.