Abstract
Lanthanum cobalt oxide (LaCoO3) powders were prepared from mixtures of LaCl3 7 H2O, CoCl2, and Na2CO3 by grinding, heating, and washing operations. The reagents were mixed in a molar ratio of 1:1:2.5 in a planetary ball mill and milled at 300 rpm for 2 h. The milled samples were heated at various calcination temperatures and washed with distilled water. Thermogravimetric and differential thermal analysis were used to evaluate the optimum conditions for calcination. Phase formation was determined by X-ray diffraction (XRD) while specific surface area was measured by the BET method. The average particle size distribution was determined by a particle size analyser and morphology studied by scanning electron microscopy (SEM). The TG and DTA curves of the milled samples indicated that the formation of LaCoO3 occurred at temperatures in the range of 600 °C to 800 °C. XRD patterns showed clearly the formation of the LaCoO3 phase with perovskite-type structure at those temperatures. In addition, the results showed that the specific surface areas of the products decreased with increasing calcination temperature, while the average particle size D(4,3) increased. Furthermore, SEM micrographs demonstrated that the particles were in an agglomerated form with mean primary particle sizes in the range of 0.3-0.6 µm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.