Abstract

The design of novel methods giving access to peptide alkylthioesters, the key building blocks for protein synthesis using Native Chemical Ligation, is an important area of research. Bis(2-sulfanylethyl)amido peptides (SEA peptides) 1 equilibrate in aqueous solution with S-2-(2-mercaptoethylamino)ethyl thioester peptides 2 through an N,S-acyl shift mechanism. HPLC was used to study the rate of equilibration for different C-terminal amino acids and the position of equilibrium as a function of pH. We show also that thioester form 2 can participate efficiently in a thiol-thioester exchange reaction with 5% aqueous 3-mercaptopropionic acid. The highest reaction rate was obtained at pH 4. These experimental conditions are significantly less acidic than those reported in the past for related systems. The method was validated with the synthesis of a 24-mer peptide thioester. Consequently, SEA peptides 1 constitute a powerful platform for access to native chemical ligation methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.