Abstract

Multisubstituted pyrroles are commonly found in many bioactive small molecule scaffolds, yet the synthesis of highly-substituted pyrrole cores remains challenging. Herein, we report an efficient catalytic synthesis of 2-heteroatom-substituted (9-BBN or SnR3) pyrroles via Ti-catalyzed [2 + 2 + 1] heterocoupling of heteroatom-substituted alkynes. In particular, the 9-BBN-alkyne coupling reactions were found to be very sensitive to Lewis basic ligands in the reaction: exchange of pyridine ligands from Ti to B inhibited catalysis, as evidenced by in situ11B NMR studies. The resulting 2-boryl substituted pyrroles can then be used in Suzuki reactions in a one-pot sequential fashion, resulting in pentasubstituted 2-aryl pyrroles that are inaccessible via previous [2 + 2 + 1] heterocoupling strategies. This reaction provides a complementary approach to previous [2 + 2 + 1] heterocouplings of TMS-substituted alkynes, which could be further functionalized via electrophilic aromatic substitution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.