Abstract

Islet cell transplantation has been an effective method for the treatment of type 1 diabetes. The transplanted islets release insulin in response to changes in blood glucose levels. The clinical application of islet transplantation, however, has been hindered because of some critical problems including immune responses to grafted islets and side effects caused by overdosed immunosuppressive drugs. Herein, surface modification technology using poly(ethylene glycol) (PEG)-dendron was proposed to safeguard islets from the host immune system. PEG-dendron was synthesized by a divergent polymerization method and utilized to cover the islet antigen surface. Successful conjugation of PEG-dendron on the islet surface was achieved without affecting islet morphology, viability, and functionality at a concentration of 1.00%. Surface modification using PEG-dendron effectively prevented protein absorption and immune activation. Foremost, it improved the survival rate of islet grafts in vivo when combined with a low dose of immunosuppressive drugs. In conclusion, PEG-dendron is a potential candidate for the surface modification of pancreatic islets to mitigate immune responses after transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call