Abstract
We report PEDOT:PSS brushes grafted from gold using surface-initiated atom-transfer radical polymerization (SI-ATRP) which demonstrate significantly enhanced mechanical stability against sonication and electrochemical cycling compared to spin-coated analogues as well as lower impedances than bare gold at frequencies from 0.1 to 105 Hz. These results suggest SI-ATRP PEDOT:PSS to be a promising candidate for use in microelectrodes for neural activity recording. Spin-coated, electrodeposited, and drop-cast PEDOT:PSS have already been shown to reduce impedance and improve biocompatibility of microelectrodes, but the lack of strong chemical bonds of the physisorbed polymer film to the metal leads to disintegration under required operational stresses including cyclic mechanical loads, abrasion, and electrochemical cycling. Rather than modifying the metal electrode or introducing cross-linkers or other additives to improve the stability of the polymer film, this work chemically tethers the polymer to the surface, offering a simple, scalable solution for functional bioelectronic interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.