Abstract
A systematic study of the asymmetric deprotonation of a dimethyl-substituted phosphine sulfide using organolithium bases in the presence of (-)-sparteine has been carried out. Use of nBuLi and (-)-sparteine in Et(2)O at -78 °C gave trapped adducts in ∼88:12 er via a kinetically controlled process that was successfully predicted using a computational approach at the B3LYP/6-31+G(d) level. This initial kinetic enantioselectivity could be enhanced up to 97:3 er by trapping the lithiated intermediate with a prochiral electrophile (e.g., pivaldehyde or tBuPCl(2)). In addition, it was found that the R(P) and S(P) stereoisomers of the lithiated methylphosphine sulfide could interconvert at temperatures above 0 °C. Such interconversion is unprecedented and differs from the configurational instability of organolithiums that are stereogenic at a lithiated carbon atom. The major, thermodynamically preferred diastereomeric (-)-sparteine-complexed lithated phosphine sulfide was investigated by X-ray crystallography and computational methods at the B3LYP/6-31+G(d) level. Through the interconversion of the R(P) and S(P) stereoisomers of the lithiated methylphosphine sulfide, a novel dynamic thermodynamic resolution of a racemic lithiated phosphine sulfide has been developed. Thus, the phosphine sulfide was lithiated with nBuLi, and then (-)-sparteine was added. After equilibration at 0 °C for 3 h, electrophilic trapping generated an adduct in 81:19 er with the configuration opposite to that obtained under kinetic control. Thus, the methodology provides access to P-stereogenic compounds with the opposite sense of induction using (-)-sparteine as the ligand simply by changing the reaction conditions (kinetic or thermodynamic control).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.