Abstract

Modifying cellulose to obtain materials with favorable processing properties and functions is highly significant, especially, for the detection and removal of heavy metal ions. In this study, fluorescent cellulose-based polyurethane (PU) films containing naphthalimide fluorophore were synthesized and could use for the convenient detection and removal of Hg+ ions. Firstly, the microcrystalline cellulose was treated with SOCl2 to convert some -OH groups into -Cl. Simultaneously, a naphthalimide derivative (NAN) with -NH- groups was synthesized. Subsequently, a fluorescent cellulose-based probe (Cel-NAN) was prepared by utilizing the substitution reaction between -Cl on cellulose and -NH- on NAN. Finally, two cellulose-based fluorescent PU films (Cel-NAN-PU1 and Cel-NAN-PU2) were successfully synthesized by reacting the unreacted -OH groups on Cel-NAN with PEG-1000 and HDI/IPDI. These as-prepared PU films could serve as portable fluorescence test papers to Hg+ ions in aqueous solutions. Upon contact with Hg+ ions, the fluorescence was quenched, acting as a “turn-off” probe. Simultaneously, these films could serve as adsorbents for the removal of Hg+ ions from aqueous systems. Cel-NAN-PU1 film exhibited a removal efficiency over 80 % and an adsorption capacity of 8.4 mg·cm−2 for Hg+. These cellulose-based fluorescent PU films possess promising potential in the field of mercury pollution control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call