Abstract

Organic near-infrared photorefractive molecular glasses with a phenothiazine moiety are designed and synthesized through the introduction of linear, racemic/homochiral asymmetrically branched aliphatic chains into photorefractive chromophore as an auxiliary group. The compounds are characterized with 1H-NMR, IR, FAB-MS, UV–vis, TG, DSC, etc. The effect of different aliphatic chains on the absorption and thermal properties is investigated in detail. The molar absorption coefficiency at the absorption maximum wavelength showed that the homochiral asymmetrically branched aliphatic chain has a strong hypochromic effect in the dilute solution when it is introduced into photorefractive chromophore. The DSC measurement indicated that the introduction of asymmetrically branched aliphatic chain is the key issue to design organic molecular glasses whether it is racemic or homochiral. The effect of racemic/homochiral asymmetrically branched aliphatic groups on photorefractive property is investigated carefully with poly(N-vinylcarbazole) (PVK) as a photoconductor and with (2,4,7-trinitro-9-fluorenylidene) malononitrile (TNFM) as a photosensitizer. The results suggested that the racemic group is more beneficial to the improvement of photorefractive performance than the homochiral when the homochiral cannot induce rigid photorefractive chromophore to be much more ordered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.