Abstract

Ordered mesoporous silica is widely used in catalysis, adsorption, and biomedicine, among which SBA-15 (Santa Barbara Amorphous-15) is one of the most widely studied. However, the synthesis of SBA-15 often requires strong acid (hydrochloric acid or sulfuric acid), which will not only corrode industrial equipment but also pollute the environment with the wastewater containing strong acid and halogen (sulfur). Here, we demonstrate a green synthetic strategy for SBA-15 under weakly acidic conditions through an anionic assembly route. With the assistance of poly(acrylic acid) (PAA) and 3-aminopropyltrimethoxysilane (APMS), the pH value of the synthesis system can be increased to 4-5, which is a mild near-neutral condition. In addition, halogen-free synthesis using organic acids is also achieved. The powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 sorption characterizations show that the obtained SBA-15 has good texture properties, with a specific surface area of 430-500 m2/g and ordered 6-8 nm mesopores, which is similar to SBA-15 synthesized in traditional strong acid. This strategy provides a facile and environmentally friendly route for the large-scale production of ordered mesoporous materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.