Abstract
The ordered mesoporous boron-containing carbon films are deposited on 304 stainless steel (304 SS) as bipolar plate material for proton exchange membrane fuel cells (PEFMCs) by spin-coating method. As shown by XRD, N2 adsorption–desorption and TEM, the composite films exhibit ordered mesoporous structures. The SEM and Raman results show that the carbon film is dense, continuous, and amorphous. The corrosion resistance, hydrophobicity and electrical conductivity, of the carbon-coated steel are investigated and compared to carbon-coated 304 SS. The ordered mesoporous boron-containing carbon film has high chemical inertness, thereby significantly enhancing the corrosion resistance of the coated 304 SS. Furthermore, the ordered mesoporous boron-containing carbon film is more hydrophobic and conductive than mesoporous carbon film. Therefore, the ordered mesoporous boron-containing carbon film-coated 304 stainless steel is a promising candidate for bipolar plate materials in PEMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.