Abstract

In this work, helical polycarbenes with optical activity were designed and facilely synthesized through the helix-sense-selective polymerization (HSSP) of the diazoacetate monomer with a dimethylbenzyl ester pendant catalyzed by π-allylPdCl with chiral phosphine ligands at room temperature. The polymerization was carried out in a living and controlled style, and a range of helical polycarbenes with the desired number-average molecular weights and narrow molecular weight distributions were obtained. Circular dichroism and UV-vis analyses revealed that these polycarbenes exhibited a stable helical conformation with a preferred handedness, and their helical directions were dependent on the chirality of the chiral phosphine ligands. Further studies showed that the helical conformation of the obtained polycarbenes was from the polymeric backbone rather than the intermolecular aggregation in the solutions. Moreover, the prepared, optically active, helical polycarbenes possessed excellent enantioselective crystallization ability for threonine racemates. The enantiomeric excess (e.e.) of the induced crystals could be up to 83% via utilizing the prepared helical polycarbenes as a chiral separation agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.