Abstract

Five dimeric oleanolic acids linked at C-28 by 1,6-hexanediamine, or built around the carbon chains of varying lengths between two carboxyl groups were synthesized, to investigate the effect of internal spacer length and species upon the stereochemical features and anti-tumor activity of the resultant bis-oleanolic acids. The IC50 values of these dimeric compounds for cytotoxicity evaluation in vitro against Hep-G2, A549, BGC-823, MCF-7 and PC-3 tumor cell lines, were mainly under 10.0 μM. This result was much better than the inhibition of proliferation against tested tumor cell lines of the monomer oleanolic acid and the commercial anticancer drug 5-fluorouracil. The cytotoxicity selectivity detection revealed that dimer 11c exhibited low cytotoxicity towards normal human liver cell HL-7702. A combination of fluorescence staining observation and flow cytometric analysis indicated that 11c could induce Hep-G2 cell apoptosis. Molecular mechanism studies suggested that 11c induced apoptosis is mediated through the intrinsic apoptotic pathway with changes in mitochondrial membrane potential by finally activating effector caspase-3/9 to trigger cell apoptosis. Further studies revealed that 11c caused cell cycle arrest at G1 phase in Hep-G2 cells. Taken together, these results suggest that 11c may be a potential candidate for further cancer research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.