Abstract

Biobased epoxy vitrimers have reached intense interest in recent decades. The triggerable reverse bonds can be introduced into these crosslinked epoxy vitrimers through epoxy resins or hardeners. This study synthesized two imine hardeners, such as vanillin-butanediamine (V-BDA) and vanillin-hexanediamine (V-HDA), using biobased vanillin, butanediamine, and hexanediamine and their chemical structures were ensured by FTIR, 1HNMR, 13CNMR, and TOF-MS. The two novel hardeners were used to cure epoxy resins, rendering vitrimers with good reprocessability, self-healing, recyclability, and solvent resistance due to the reversible imine bonds. The flexural strengths and modulus of these cured resins were consistent with those of epoxy resins that were hardened with traditional amine-based hardeners. The cured resins maintained 100% of their Tg and flexural properties after being reprocessed up to three times. It was revealed that the cured epoxy vitrimers could be degraded entirely in a particular acidic solution capable of bond-exchanging reactions within 12 h at 50 ᵒC, allowing the thermoset matrix to be chemically recycled and the monomers regenerated. This versatile recyclability, combined with the use of fully biobased feedstocks to prepare the hardeners, provides an attractive approach to help achieve a sustainable circular composite economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call