Abstract

Abstract A new series of urea and thiourea derivatives containing benzimidazole group as potential anticancer agents have been designed and synthesized. The structures of the synthesized compounds were characterized and confirmed by spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectrometry. In vitro anticancer assay against two breast cancer (BC) cell lines, MDA-MB-231ER(−)/PR(−) and MCF-7ER(+)/PR(+), revealed that the cytotoxicity of 1-(2-(1H-benzo[d]imidazol-2-ylamino)ethyl)-3-p-tolylthiourea (7b) and 4-(1H-benzo[d]imidazol-2-yl)-N-(3-chlorophenyl)piperazine-1-carboxamide (5d) were higher in MCF-7 with IC50 values of 25.8 and 48.3 µM, respectively, as compared with MDA-MB-231 cells. Furthermore, 7b and 5d were assessed for their apoptotic potential using 4′,6-diamidino-2-phenylindole, acridine orange/ethidium bromide staining, and Caspase-3/7. After incubation with MCF-7, the compounds 7b and 5d induced apoptosis through caspase-3/7 activation. In conclusion, the compounds 7b and 5d are potential candidates for inducing apoptosis in different genotypic BC cell lines.

Highlights

  • A new series of urea and thiourea derivatives containing benzimidazole group as potential anticancer agents have been designed and synthesized

  • MCF-7 cells were incubated with 7b and 5d (2× IC50) as described in the Section 2.5 for 24 h, stained with Acridine orange/ethidium bromide (AO/EB) (2 μg mL−1) for 10 min, and were viewed using fluorescence microscopy

  • The synthesis of thiourea and urea derivatives of benzimidazole is outlined in Scheme 1

Read more

Summary

Introduction

Abstract: A new series of urea and thiourea derivatives containing benzimidazole group as potential anticancer agents have been designed and synthesized. The structures of the synthesized compounds were characterized and confirmed by spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectrometry. In vitro anticancer assay against two breast cancer (BC) cell lines, MDA-MB-231ER(−)/PR(−) and MCF-7ER(+)/PR(+), revealed that the cytotoxicity of 1-(2-(1H-benzo[d]imidazol-2-ylamino)ethyl)-3-p-tolylthiourea (7b) and 4-(1H-benzo[d] imidazol-2-yl)-N-(3-chlorophenyl)piperazine-1-carboxamide (5d) were higher in MCF-7 with IC50 values of 25.8 and 48.3 μM, respectively, as compared with MDAMB-231 cells. 7b and 5d were assessed for their apoptotic potential using 4′,6-diamidino-2-phenylindole, acridine orange/ethidium bromide staining, and Caspase-3/7. After incubation with MCF-7, the compounds 7b and 5d induced apoptosis through caspase-3/7 activation. The compounds 7b and 5d are potential candidates for inducing apoptosis in different genotypic BC cell lines

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.