Abstract

Superdisintegrants have an important function in Fast dissolving tablets (FDT). It's believed that an increase in surface to the mass (size reduction) can enhance their performance. Due to the obligation of pharmaceutical excipients being in GRAS (generally recognized as safe) list, we've devoted our research to modify one of the routinely used and important natural polymer, cellulose, as superdisintegrant. Nanocrystalline cellulose (NCC) was extracted from microcrystalline cellulose (MCC) via the sulfuric acid hydrolysis process. NCC derivatives have been synthesized by Itaconic acid/Hydroxyethyl methacrylate (IA/HEMA) via maleic anhydride (MA) to acquire unique swellability properties in to achieve superabsorbent cellulose-based nano hydrogel with the cross-linking system. The disintegration performance of prepared tablets was compared with tablets composed of sodium starch glycolate (SSG) and MCC as positive and negative controls. The results show that the disintegration time of tablets formulated with synthesized modified NCC (m-NCC) decreased dramatically compared to other disintegrants. The dissolution analysis showed suitable condition for complete drug release in a shorter time. The in vitro cytotoxic experiments proved the biocompatibility of newly synthesized superdisintegrant. The dissolution Analysis findings suggest that our developed novel superdisintegrant paves the way for the formulation of fast dissolving tablets containing rapidly acting medicines such as zolpidem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.