Abstract

Novel fluorescent styryl push–pull compounds having electron donating thiazole unit were synthesized by condensing 4-chloro-2-(morpholin-4-yl)-1,3-thiazole-5-carbaldehyde with active methylene compounds via classical Knoevenagel condensation. The synthesized styryl molecules were characterized by spectral analysis. Photophysical properties of these styryl derivatives were analyzed and the effect of change in solvent polarity and viscosity on their absorptive and emissive properties has been investigated. Density functional theory (DFT) and time dependent-density functional theory (TD-DFT) computations have been used to understand the structural, molecular, electronic and photophysical parameters of push–pull dyes. Bakhshiev and Kawski–Chamma–Viallet correlations were used to calculate the ratio of ground to excited state dipole moment of the synthesized novel styryl compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call