Abstract

In this study, the synthesis and characterization of a new Schiff base and its cobalt(II) and iron(III) complexes were performed fully characterized by common spectroscopic techniques such as 1H-NMR, 13C-NMR, FT-IR, UV–Vis and MS and elemental analysis. The cathodes prepared with only activated carbon, Co-Schiff base complex, and Fe-Schiff base complex mixed with activated carbon as the carrier were examined in single chamber air cathode microbial fuel cells (MFCs). The spectroscopic results confirm the structure of novel Schiff base and its complexes with cobalt (II) and Fe(III). MFC results showed that Fe-Schiff base complex generated higher voltage generation using glucose as the carbon source. Cyclic voltammetry results showed the conductivity and catalytic features of the cathodes developed in this study. Scanning electron microscopic results showed the distribution the complexes on the cathode surface. In conclusion, a novel Schiff base and its complexes with cobalt (II) and iron (III) can be employed into MFC technology to be used in green electricity production, and might help decreasing the operating costs of wastewater treatment plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.