Abstract
Cyclooctadiene (COD) was polymerized via ring-opening metathesis polymerization (ROMP) in the presence of 5-norbornene-exo, endo-2-carboxylic acid 2,2,6,6-tetramethyl-4-piperidinyl ester (PN) or 5-norbornene-2-exo-3-endo-dicarboxylic acid bis(2,2,6,6-tetramethyl-4-piperidinyl) ester (2,3-PN) to prepare a new kind of polymeric hindered amine (HALS) stabilizers. Unexpectedly, hindered amine norbornene derivatives PN and 2,3-PN did not act as comonomer but acted as chain transfer agent (CTA). The resulting polymers were characterized by gel permeation chromatography (GPC) and 1H-NMR. Investigation of polymerization behavior showed that hindered amine groups were introduced into polymer chain by virtue of chain degradation resulted from chain transfer. The molecular weight (Mn) and HALS content of the resulting polymeric HALS stabilizer could be regulated by varying molar ratio of initial monomer to catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.