Abstract

The ganglioside-activator protein is an essential cofactor for the lysosomal degradation of ganglioside GM2 (GM2) by beta-hexosaminidase A. It mediates the interaction between the water-soluble exohydrolase and its membrane-embedded glycolipid substrate at the lipid-water interphase. Mutations in the gene encoding this glycoprotein result in a fatal neurological storage disorder, the AB variant of GM2-gangliosidosis. In order to efficiently and sensitively probe the glycolipid binding and membrane activity of this cofactor, we synthesized two new fluorescent glycosphingolipid (GSL) probes, 2-NBD-GM1 and 2-NBD-GM2. Both compounds were synthesized in a convergent and multistep synthesis starting from the respective gangliosides isolated from natural sources. The added functionality of 2-aminogangliosides allowed us to introduce the chromophore into the region between the polar head group and the hydrophobic anchor of the lipid. Both fluorescent glycolipids exhibited an extremely low off-rate in model membranes and displayed very efficient resonance energy transfer to rhodamine-dioleoyl phosphoglycerol ethanolamine (rhodamine-PE) as acceptor. The binding to GM2-activator protein (GM2AP) and the degrading enzyme was shown to be unaltered compared to their natural analogues. A novel fluorescence-resonance energy transfer (FRET) assay was developed to monitor in real time the protein-mediated intervesicular transfer of these lipids from donor to acceptor liposomes. The data obtained indicate that this rapid and robust system presented here should serve as a valuable tool to probe quantitatively and comprehensively the membrane activity of GM2AP and other sphingolipid activator proteins and facilitate further structure-function studies aimed at delineating independently the lipid- and the enzyme-binding mode of these essential cofactors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.