Abstract

Synthesis and reporting of new nanoparticles with diverse properties is important in chemistry. A one-step, rapid and controllable synthesis of the new Fe3O4 surrounded in Ti-MOF nanostructures was carried out with microwave technology. After identifying and confirming the structure, Fe3O4 surrounded in Ti-MOF nanostructures was used as a suitable catalyst with high thermal resistance and recyclable in a three-component reaction of phenylhydrazine, malononitrile and aldehyde to synthesis novel pyrazole derivatives. Continuing investigations on Fe3O4 surrounded in Ti-MOF nanostructures, its antimicrobial properties were tested on Gram-positive bacterial species, Gram-negative bacterial species and fungi bacterial. Identification of Fe3O4 surrounded in Ti-MOF nanostructures with morphology and size distribution technique (SEM), surface area technique (BET), Infrared spectroscopy (FT-IR), Energy-Dispersive X-ray spectroscopy (EDX/EDX mapping), and Vibrating Sample Magnetometer (VSM) were performed. Synthesized pyrazole derivatives with Fe3O4 surrounded in Ti-MOF nanostructures than previously reported methods have less synthesis time and high efficiency. In antimicrobial properties high effects were observed based on MIC, MBC, and MFC values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call