Abstract
The modulators of farnesoid X receptor (FXR), a bile acid receptor, regulate various biological processes including bile acid metabolism, and are associated with the control of fatty liver and osteoporosis. Thus, the control of FXR activity and development of FXR modulators are critical not only for research, but also for clinical application. In this study, we synthesized novel FXR agonists 1–4 possessing isoxazole and N-substituted benzimidazole moieties, and compared their effects on osteoblast differentiation with the known FXR agonists, chenodeoxycholic acid and a synthetic compound, GW4064. Two (3 and 4) of the four novel FXR agonists 1–4 showed high specificities for FXR. Computer-assisted modeling suggested that the binding of the FXR agonist 3 with ligand binding domain of FXR was similar to GW4064. FXR was expressed in mouse bone marrow-derived mesenchymal stem cell (MSC)-like ST2 cells (ST-2 MSCs). The FXR agonists activated the BMP-2-induced differentiation of ST-2 MSCs into osteoblasts and enhanced the expression of RUNX2. Moreover, the potency of the FXR agonist 3 was comparable to GW4064 in promoting osteoblast differentiation of ST-2 MSCs. These results indicate that FXR activation enhanced the BMP-2-induced differentiation of MSCs into osteoblasts through activating RUNX2 expression. FXR could be a potential therapeutic target for the treatment of bone diseases such as osteoporosis.
Highlights
Bone formation is a developmental process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblasts [1]
The initial step in tackling farnesoid X receptor (FXR) agonists was carried out using N-substituted benzimidazole with the Synthesis of as Agonists carboxylic acid the FXR
We investigated the role of FXR in osteoblast differentiation of ST-2 MSCs using the known and novel FXR agonists
Summary
Bone formation is a developmental process involving the differentiation of mesenchymal stem cells (MSCs) into osteoblasts [1]. Runt-related transcription factor 2 (RUNX2, known as Cbfa, PEBP2A1, and AML3) has been firstly identified as an osteogenic transcription factor [8,9]. It plays important roles in the induction of differentiation of MSCs into osteoblasts [10] by activating the expression of a variety of osteogenic proteins such as type I collagen A1 (COL1A1), osteocalcin (OCN), and alkaline phosphatase (ALP) [8,11,12,13]. It was reported that RUNX2-null mice lacked endochondral and membranous ossification and osteoblast differentiation [9,14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.