Abstract

A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters.

Highlights

  • Keywords Silicon carbide Á Tungsten oxide Á Nanowires Á Nanorods Á Vapor–solid mechanism Á Field emission

  • The one-dimensional (1D) semiconductor nanostructures have attracted considerable research activities Hyeyoung Kim and Karuppanan Senthil contributed to this article.K

  • Since there are no reports available on the heteronanostructures of WO3 with SiC up to our knowledge, in this article, we report for the first time, the synthesis of SiC–WOx nanostructures by a simple two-step thermal evaporation process

Read more

Summary

Introduction

Keywords Silicon carbide Á Tungsten oxide Á Nanowires Á Nanorods Á Vapor–solid mechanism Á Field emission Bae et al [25] have fabricated heterostructures of ZnO nanorods with various 1D nanostructures (CNTs, GaN, GaP, and SiC nanowires) by thermal chemical vapor deposition of Zn at a low temperature. Since there are no reports available on the heteronanostructures of WO3 with SiC up to our knowledge, in this article, we report for the first time, the synthesis of SiC–WOx nanostructures by a simple two-step thermal evaporation process.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.