Abstract

The search for accurate and sensitive methods to detect chemical substances, namely cations and anions, is urgent and widely sought due to the enormous impact that some of these chemical species have on human health and on the environment. Here, we present a new platform for the efficient sensing of Cu2+ and Li+ cations. For this purpose, two novel photoactive diketopyrrolopyrrole-rhodamine conjugates were synthesized through the condensation of a diketopyrrolopyrrole dicarbaldehyde with rhodamine B hydrazide. The resulting chemosensors 1 and 2, bearing one or two rhodamine hydrazide moieties, respectively, were characterized by 1H and 13C NMR and high-resolution mass spectrometry, and their photophysical and ion-responsive behaviours were investigated via absorption and fluorescence measurements. Chemosensors 1 and 2 displayed a rapid colorimetric response upon the addition of Cu2+, with a remarkable increase in the absorbance and fluorescence intensities. The addition of other metal ions caused no significant effects. Moreover, the resulting chemosensor-Cu2+ complexes revealed to be good probes for the sensing of Li+ with reversibility and low detection limits. The recognition ability of the new chemosensors was investigated by absorption and fluorescence titrations and competitive studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.