Abstract

AbstractCopper nanoparticles (Cu NPs)/ternary polymer blend nanocomposites were synthesized via a solution‐casting technique. The nanocomposites were studied for their structural, thermal, rheological and electric properties. Scanning electron micrographs and atomic force micrographs showed no phase separation between the polymers, a narrow size distribution of Cu NPs (in the range 25–43 nm) and good dispersion of Cu NPs in the polymer matrix. Energy‐dispersive X‐ray analysis confirmed the presences of Cu in the matrix. X‐ray diffraction data showed a characteristic face‐centred cubic architecture for Cu unit cell and interaction of the Cu NPs with oxygen‐carrying polymers. Thermogravimetric analysis showed an increase in the degradation temperature (from 254 to 268 °C) and three‐step degradation of the nanocomposites. Rheological analysis showed an increase in the complex viscosities and storage modulus for the nanocomposites. AC impedance studies showed increased ionic conductivities and decreased bulk resistance for the nanocomposites. All these studies suggested interactions between Cu NPs and polymer matrix and the formation of a network structure. © 2017 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.