Abstract
The synthesis and catalytic application of novel catalytic materials such as inorganic nanotubes and transition metal carbides and nitrides have been discussed in this chapter. The overall forecast for new catalytic materials, their methods of synthesis to design innovative materials, as well as the comparison with physical or chemical traditional methods have been emphasized. Specifically, the general aspects concerning the titanate nanotubes, including their routes of preparation and their characterizations for the production of valuable chemical intermediates, are discussed. The catalytic application of these solids as catalysts or supported catalysts for polymerization, photocatalytic activity, anodization, Knoevenagel reaction, oxidation and reduction of methyl orange, Cannizzaro reaction, CO oxidation, hydroformylation of vinyl acetate, and phenol oxidation reactions has been discussed. In addition to these advances, the catalytic profile of transition metal carbides and nitrides as novel catalysts for hydrotreatment reactions is described, making emphasis in bulk and supported material characteristics. Finally, this chapter reviews some studies with model molecules and real feedstocks, mechanism of hydrogen activation and transfer, and relationships between their resistance to severe deactivation and high activity with their resemblance with noble metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.