Abstract
Infections caused by drug-resistant (DR) Mycobacterium abscessus (M. abscessus) complex (MAC) are an important public health concern, particularly when affecting individuals with various immunodeficiencies or chronic pulmonary diseases. Rapidly growing antimicrobial resistance among MAC urges us to develop novel antimicrobial candidates for future optimization. Therefore, we have designed and synthesized benzenesulfonamide-bearing functionalized imidazole or S-alkylated derivatives and evaluated their antimicrobial activity using multidrug-resistant M. abscessus strains and compared their antimycobacterial activity using M. bovis BCG and M. tuberculosis H37Ra. Benzenesulfonamide-bearing imidazole-2-thiol compound 13, containing 4-CF3 substituent in benzene ring, showed strong antimicrobial activity against the tested mycobacterial strains and was more active than some antibiotics used as a reference. Furthermore, an imidazole-bearing 4-F substituent and S-methyl group demonstrated good antimicrobial activity against M. abscessus complex strains, as well as M. bovis BCG and M. tuberculosis H37Ra. In summary, these results demonstrated that novel benzenesulfonamide derivatives, bearing substituted imidazoles, could be further explored as potential candidates for the further hit-to-lead optimization of novel antimycobacterial compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.