Abstract

Ten azo compounds including azo-resveratrol (5) and azo-oxyresveratrol (9) were synthesized using a modified Curtius rearrangement and diazotization followed by coupling reactions with various phenolic analogs. All synthesized compounds were evaluated for their mushroom tyrosinase inhibitory activity. Compounds 4 and 5 exhibited high tyrosinase inhibitory activity (56.25% and 72.75% at 50μM, respectively). The results of mushroom tyrosinase inhibition assays indicate that the 4-hydroxyphenyl moiety is essential for high inhibition and that 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. Particularly, introduction of hydroxyl or methoxy group into the 4-hydroxyphenyl moiety diminished or significantly reduced mushroom tryosinase inhibition. Among the synthesized azo compounds, azo-resveratrol (5) showed the most potent mushroom tyrosinase inhibition with an IC50 value of IC50=36.28±0.72μM, comparable to that of resveratrol, a well-known tyrosinase inhibitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call