Abstract
In a search for therapeutic agents for the treatment of osteoporosis and bone fracture, we found that 2-benzothiopyran-1-carboxamide derivatives 1, derived from ipriflavone as a lead compound, increase cellular alkaline phosphatase activity in cultures of rat bone marrow stromal cells. Further modification of 1 has led to the discovery of more potent 3-benzothiepin-2-carboxamide derivatives 2. Of these, 3-benzothiepin derivatives bearing a 4-(dialkoxyphosphorylmethyl)phenyl group on the 2-carboxamide moiety such as 2h and 2q exhibited significant improvement of activity compared to ipriflavone. Asymmetric synthesis of 2h and 2q revealed that the (-)-isomers possessed activities superior to those of the (+)-isomers. Further evaluation of these compounds using the mouse osteoblastic cell line MC3T3-E1 revealed that (-)-2q enhanced the effect of bone morphogenetic protein. In addition, application of a sustained-release agent containing 2q increased the area of newly formed bone in a rat skull defect model. Based on these findings, (-)-2q was selected for further investigation as a new drug stimulating bone formation. Synthesis and structure-activity relationships for this novel series of 2-benzothiopyran and 3-benzothiepin derivatives are detailed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.