Abstract

To find novel herbicidal compounds with high activity and broad spectrum, a series of phenylpyridine moiety-containing α-trifluoroanisole derivatives were designed, synthesized, and identified via nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). Greenhouse-based herbicidal activity assays revealed that compound 7a exhibited > 80% inhibitory activity against Abutilon theophrasti, Amaranthus retroflexus, Eclipta prostrate, Digitaria sanguinalis, and Setaria viridis at a dose of 37.5 g a.i./hm2, which was better than fomesafen. Compound 7a further exhibited excellent herbicidal activity against Abutilon theophrasti and Amaranthus retroflexus in this greenhouse setting, with respective median effective dose (ED50) values of 13.32 and 5.48 g a.i./hm2, both of which were slightly superior to fomesafen (ED50 = 36.39, 10.09 g a.i./hm2). The respective half-maximal inhibitory concentration (IC50) for compound 7a and fomesafen when used to inhibit the Nicotiana tabacum protoporphyrinogen oxidase (NtPPO) enzyme, were 9.4 and 110.5 nM. The docking result of compound 7a indicated that the introduction of 3-chloro-5-trifluoromethylpyridine and the trifluoromethoxy group was beneficial to the formation of stable interactions between these compounds and NtPPO. This work demonstrated that compound 7a could be further optimized as a PPO herbicide candidate to control various weeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call