Abstract
A novel functionalized carbon dot has been synthesized by covalently linking β-cyclodextrin to the surface of N, S codoped carbon dots (β-CD-CDs). The characterization was confirmed by transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectra, ultraviolet-visible, and fluorescence emission spectra. On the basis of this carbon dot and (ferrocenylmethyl) trimethylammonium iodide (Fc+), a photo-induced electron transfer (PET) fluorescent probe system was developed to determine the concentration of testosterone in water and identify testosterone in cell by fluorescence imaging as a visible biomarker. Under the optimum condition, the fluorescent intensity of the probe system linearly responded to the concentration of testosterone from 0μM to 280μM and the limit of detection was 0.51μM. This probe system also performed well at determining testosterone in groundwater with average recoveries of testosterone ranging from 96% to 107% at spiking levels of 0.5–100μM, and the relative standard deviation remained below 13%, which provided a reliable, rapid and easy method to determine testosterone in environmental water. Furthermore, the low cytotoxicity, high anti-interference ability, and excellent biocompatibility of β-CD-CDs made this probe system successfully used in cell fluorescence imaging to monitor levels of testosterone in the cytoplasm of cells with a promising application value in medical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.