Abstract

We have studied the feasibility of preparing tantalum and niobium nitrides by reducing Та2O5, Nb2O5, Mg4Та2O9, and Mg4Nb2O9 with magnesium vapor. The process was run in two steps: (1) reduction of the oxides at a temperature of 820°C and a residual argon pressure of 5 kPa in the reactor for 4 h and (2) nitridation of the reduction products in a nitrogen atmosphere at 820 and 900°C for 1–12 h. The phase composition of the powders after leaching out the magnesium oxide was determined on DRF-2 and DRON-4 X‑ray diffractometers. The specific surface area was determined by BET adsorption measurements on a Micromeritics TriStar II 3020 analyzer. When Ta2O5 was used as precursor, the nitridation product contained θ-TaN, e-TaN, and Ta2N. The use of Nb2O5 as a precursor led to the formation of face-centered cubic NbN, hexagonal close-packed NbN, Nb2N, and Nb4N3. The Mg4Ta2O9 and Mg4Nb2O9 reduction products did not absorb nitrogen. The results obtained are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.