Abstract

The combination of two or more nanoparticles found to be effective strategy to synthesize nanocomposites for better drug delivery and treatment. In the present study, we have combined cobalt (Co), nickel (Ni), niobium (Nb), and iron oxide (Fe2O4) and prepared niobium substituted cobalt-nickel nano-ferrite nanocomposites (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) by using hydrothermal approach. We have characterized the structure and morphology of nanocomposites by using XRD, EDX, TEM and SEM methodologies. We have examined the impact of nanocomposites (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) on cancerous cells (human colorectal carcinoma cells, HCT-116) by using MTT assay. We have also checked the impact of nanocomposites on normal and non-cancerous cells (human embryonic kidney cells, HEK-293) to confirm the specificity of their actions. Post- 48 h treatment of Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) led to dose-dependent inhibition of cancer cells growth and proliferation. However, no cytotoxic effect was observed on the normal cells (HEK-293). In addition, DAPI stained nuclear DNA staining analysis demonstrates that the Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) treatment also caused nuclear DNA disintegration which is the marker for programmed cell death. These results demonstrate that synthesized nanocomposites Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) selectively target the colon cancer cells and induce cancer cell death. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.