Abstract

Polyaniline (PANI) stands out as a highly promising conducting polymer with potential for advanced utilization in high-performance pseudocapacitors. Therefore, there exists a pressing need to bolster the structural durability of PANI, achievable by developing composite materials that can enhance its viability for supercapacitor applications. In this particular study, a pioneering approach was undertaken to produce a novel NiMn2O4/PANI supercapacitor electrode material. A comprehensive array of analytical techniques was employed to ascertain the structural configuration, morphology, oxidation states of elements, composition, and surface characteristics of the electrode material. The electrochemical evaluation of the NiMn2O4/PANI composite shows a specific capacitance (Cs) of 1530 ± 2 F g-1 at 1 A g-1. Significantly, the composite material displays an outstanding 93.61% retention of its capacity after an extensive 10 000 cycles, signifying remarkable cycling stability, while the 2-electrode configuration reveals a Cs value of 764 F g-1 at 5 mV s-1 and 826 F g-1 at 1 A g-1 with a smaller charge transfer resistance (Rct) value of 0.67 Ω. Chronoamperometric tests showed excellent stability of the fabricated material up to 50 h. This significant advancement bears immense promise for its potential implementation in high-efficiency energy storage systems and heralds a new phase in the development of supercapacitor technology with improved stability and performance metrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call