Abstract

A series of new Ni(II) complexes containing indole-based thiosemicarbazone ligands was synthesized and characterized by elemental analyses, and UV-visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. The Ni(II) complexes (1-4) bear the general formula [Ni{C10H9N2NHCSNH(R)}2] where R=hydrogen (1), 4-methyl (2), 4-phenyl (3) and 4-cyclohexyl (4). Molecular structure of ligands (L3 and L4) and complexes (2, 3 and 4) was confirmed by single crystal X-ray crystallography. Four coordinated Ni(II) complexes showed square planar geometry. The interaction of the Ni(II) complexes with calf thymus DNA (CT-DNA) has been evaluated by absorption spectroscopic and ethidium bromide (EB) competitive binding studies, which revealed the intercalative interaction of the complexes with CT-DNA. Gel electrophoresis experiments showed the cleavage of DNA by the complexes without any external agent. Further, the interaction of the complexes with bovine serum albumin (BSA) was investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods, which showed that the complexes could bind strongly with BSA. Molecular docking was employed to understand the binding of the Ni(II) complexes with the molecular target B-DNA, human DNA topoisomerase I and BSA. All the Ni(II) complexes possess high antioxidant activity against 2-2-diphenyl-1-picrylhydrazyl (DPPH) radical and antihaemolytic activity. In addition, in vitro cytotoxicity of the Ni(II) complexes against lung cancer (A549), human breast cancer (MCF7) and mouse embryonic fibroblasts (L929) cell lines was investigated. Complex 4 has high cytotoxicity. The mode of cell death effected by complex 4 has been explored using Hoechst 33258 staining. Nickel(II) complexes of thiosemicarbazone ligands were synthesized and their DNA/protein binding, DNA cleavage and cytotoxicity abilities were studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.