Abstract

Melamine-derived carbon foam (MDCF) and nickel–cobalt bimetallic nanosheet arrays (NiCo-BNSA) possess unique porous structures and excellent microwave absorption (MA) properties, making them potentially useful in MA applications. In this investigation, we fabricated NiCo-BNSA/reduced graphene oxide/MDCF (NiCo-BNSA/RGO/MDCF) composites utilizing a two-stage synthesis protocol. This process incorporated melamine foam (MF) pretreatment, carbonization, and a subsequent in-situ growth stage, resulting in the creation of a three-dimensional porous network structure. By adjusting the RGO volume, we were able to manipulate the structure and composition of the NiCo-BNSA/RGO/MDCF composites, leading to an enhancement in their MA performance. It was also observed that the NiCo-BNSA was evenly distributed on the surface of both the RGO and MDCF. The composites exhibited an optimal reflection loss (RLmin) of −67.8 dB at a thickness of 2.50 mm, and by varying their thickness, the effective absorption bandwidth (EAB, RL ≤ -10 dB) extended to 9.80 GHz, encompassing the entire C and X bands. This study presents a novel approach for fabricating lightweight and efficient carbon-based MA composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call