Abstract
We report the fabrication of micron-sized rodlike particles of nonstoichiometric Co and Ni ferrites by aging coprecipitated Fe(OH)2 and M(OH)2—where M is either Ni or Co—at 90 °C in the presence of an external magnetic field (B ≈ 405 mT). Potassium nitrate was used as a mild oxidant. Resultant particles were analyzed by means of electron microscopy, x-ray powder diffraction (XRD), magnetometry, energy dispersive x-ray (EDX) spectrometry, and atomic absorption spectroscopy. Rodlike particles of both types of ferrite exhibited a relatively uniform thickness, an average aspect ratio close to 10, and have a spinel crystalline structure. EDX spectrometry and atomic absorption spectroscopy confirmed the incorporation of Ni2+ and Co2+ in the respective ferrite particles. The incorporation of Co2+ led to non-negligible remanence and coercivity. The incorporation of Ni2+ led to a lower saturation magnetization, whereas the remanence and coercivity of the Ni ferrite were very low, still typical of a soft ferrimagnetic material. The mechanism of formation of the rodlike particles was investigated by the time-dependent observation of growing Ni ferrite rods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.