Abstract

Even though economic advantages of silicon still keep it as the dominant material for the solar cell industry in the near future, crystal silicon in the diamond structure (d-Si) is an indirect bandgap semiconductor which prevents to consider it as a next-generation platform for optical material technologies. Here, we report the formation of a new allotrope of silicon on surface, Si9, using a novel two-step synthesis methodology. First, a film of amorphous silicon was produced by using pulsed laser deposition method, and second, new Si9 was synthesized under irradiation of coherent electron beam on the amorphous Si film. It is important that the structure of Si9, forming six-membered sp3 silicon rings and involving 9 silicon atoms in one unit, possesses a direct bandgap near 1.59 eV, around which we have measured the emission peak in photoluminescence spectra on the pure Si9. It is discovered that Si9 can be easily doped as both p- and n-type on surface, where boron and nitrogen are demonstrated as the most promising elements for the p-type and n-type doping in Si9, respectively, due to their low formation energies and reductions in the band gap. These properties suggest great potential in constructing a novel Si9-based p-n junction which is highly desired for future industrial application of optoelectronic technologies and photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call