Abstract

Akt kinases are attractive targets for small molecule drug discovery because of their key role in tumor cell survival/proliferation and their overexpression/activation in many human cancers. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel Akt kinase inhibitors, based on a quinoxaline or pyrazinone scaffold. A series of new substituted pyrrolo[1,2-a]quinoxaline derivatives, structural analogues of these active quinoxaline or pyrazinone pharmacophores, was synthesized from various substituted 2-nitroanilines or 1,2-phenylenediamine via multistep heterocyclization process. These new compounds were tested for their in vitro ability to inhibit the proliferation of the human leukemic cell lines K562, U937 and HL60, and the breast cancer cell line MCF7. Three of these human cell lines (K562, U937 and MCF7) exhibited an active phosphorylated Akt form. The most promising active pyrroloquinoxalines were found to be 1a that inhibited K562 cell line proliferation with an IC50 of 4.5 μM, and 1h that inhibited U937 and MCF7 cell lines with IC50 of 5 and 8 μM, respectively. These two candidates exhibited more potent activities than the reference inhibitor A6730.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.