Abstract

In this study photo-catalytic degradation of sulfamethoxazole (SMX) from aqueous solutions using carbon quantum dot (CQD)-decorated Cu-TiO2 was investigated. The as-prepared photo-catalyst samples were characterized by various FTIR, XRD, FE-SEM, TEM, EDX, BET, and DRS techniques. The investigation of effective photo-catalytic operational parameters confirmed that the complete removal of SMX (20mg/L) can be accomplished at pH: 6.0 and light intensity: 75 mW/cm2 over a 30-min reaction time. DRS analysis demonstrated adding CQD to the Cu-TiO2 reduced its bandgap energy from 2.97 to 2.90eV. The photo-catalytic degradation kinetics of SMX fit well with the pseudo-first-order model. The radical trapping experiment indicates that HO• and O2•- active species were more effective species for SMX degradation, and the higher inhibition effect on the SMX degradation efficiency was assigned to O2•- ions. The water matrix species-inhibited effect in SMX removal was as follows: SO42- > Cl- > NO3- > CO3- > no ions. The synthesized photo-catalyst could be recycled after six consecutive cycles of SMX degradation with an insignificant decrease in performance. The total organic carbon (TOC) analysis suggested the mineralization of SMZ by composite photo-catalysts. The minimum inhibitory concentration (MIC) for Escherichia coli remained at 12.5mg L-1 SMX. A possible mechanism and pathway of SMX degradation in the photo-catalytic system was presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.