Abstract
The issues of the synthesis of a water-soluble polymer preparation, which can find application in agriculture as a structure-forming agent of soils and mobile sands to prevent water, wind, mechanical erosion, increase fertility, moisture absorption, moisture retention, consolidation of soils, dumps, and mobile sands to eliminate negative effects on the environment. Maleic acid and acrylamide were chosen as monomers for the copolymerization reaction, and potassium persulfate was chosen as the initiator. As it turned out, an increase in the concentration of the initiator from 0.01 to 0.05% (by weight of monomers) promotes an increase in the rate of the polymerization process, maintaining its value for a longer time, reducing the time of this process from 7.0-6.5 to 5, 5-6 hours. In this case, the yield of the polymerization reaction increased exactly from 81.2 to 96.0% for the reaction with the ratio of starting materials 1: 5. When a small amount of alkali is introduced into the reaction mixture, high molecular weight polymers can be obtained. In this case, the yield of the process increases, and the reaction time is reduced by 2-3 hours. Analysis of the kinetics of fixing processes using synthesized and various other reagents, as well as changes in the plastic strength of sands, showed the dependence of the conditions of penetration of the fixer with the formation of a free flow in space under the influence of gravitational or capillary forces on the type of binding agent and on the composition of the sand itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.