Abstract

A series of 5H-dibenz[b,f]azepine derivatives was prepared and evaluated for binding affinities to muscarinic receptors in vitro. Among them, compound 8 showed a high affinity for human recombinant M2 receptors (Ki=2.6 nm), a low affinity for M4 receptors (39-fold less than for M2 receptors) and a very low affinity for M1 and M3 receptors (119- and 112-fold less than for M2 receptors, respectively). The high M2 selectivity of 8 may be attributed to the olefinic bond of the azepine ring. Functional experiments showed 8 to be a competitive antagonist with high affinity to the cardiac (pA2=7.1) and low affinity to the intestinal muscarinic receptors (IC50=0.54 microM). In vivo experiments confirmed the in vitro M, selectivity of 8. Acetylcholine-induced bradycardia was dose-dependently antagonized in rats after both intravenous and intraduodenal administration of 8. In rats, cholinergic functions mediated by M1 or M3 receptors (salivary secretion, pupil diameter, gastric emptying, intestinal transit time) were not affected by the oral administration of 8 even at doses as high as 30 times the antibradycardic effective dose. Furthermore, 8 had no analgesic activity in mice, indicating poor central nervous system penetration. In dogs, nocturnal bradycardia was dose-dependently inhibited by the oral route with a duration of action of about 24 h. Compound 8 appears to be a promising cardioselective antimuscarinic agent for the treatment of dysfunctions of the cardiac conduction system such as sinus or nodal bradycardia ("sick-sinus syndrome") and atrioventricular block.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call