Abstract
This paper reports the synthesis and physical properties of a series of bipolar host materials, using of a hole-transporting triphenylamine (TPA) monomer as a core incorporated with different numbers of diphenylphosphine oxide (PO) as electron-transporting moieties, 4-(diphenylphosphoryl)-N,N-diphenylaniline (DDPA), 4-(diphenylphosphoryl)-N-(4-(diphenylphosphoryl)phenyl)-N-phenylaniline (DDPP), and tris(4-(diphenylphosphoryl)phenyl)amine (TDPA), for solution-processed deep-blue phosphorescent organic light-emitting devices (PhOLEDs). With the increasing numbers of PO units, the glass-transition temperature of those compounds rise gradually. Moreover, the newly synthesized compounds all possess high triplet energies, which can prevent back energy transfer between the host and dopant molecules, and are expected to serve as appropriate hosts for iridium(III) tris(3,5-difluoro-4-cyanophenyl)pyridinato-N,C′ (FCNIrpic). The solution-processed devices using DDPP and TDPA as the hosts for the phosphorescence emitter FCNIrpic showed the maximum luminance efficiencies of 9.7 and 6.6cdA−1, respectively. The efficiency of TDPA based device shows nearly three times higher than the value of commonly used host material 1,3-bis(9-carbazolyl)benzene (mCP) with the same structure, which is outstanding with respect to other works related to the solution-processed deep-blue PhOLEDs based on small-molecule hosts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.