Abstract

The unconstrained step semantics of Petri nets is impractical for simulating and modelling applications. In the past, this inadequacy has been alleviated by introducing various flavours of maximally concurrent semantics, as well as priority orders. In this paper, we introduce a general way of controlling step semantics of Petri nets through step firing policies that restrict the concurrent behaviour of Petri nets and so improve their execution and modelling features. In a nutshell, a step firing policy disables at each marking a subset of enabled steps which could otherwise be executed. We discuss various examples of step firing policies and then investigate the synthesis problem for Petri nets controlled by such policies. Using generalised regions of step transition systems, we provide an axiomatic characterisation of those transition systems which can be realised as reachability graphs of Petri nets controlled by a given step firing policy. We also provide a decision and synthesis algorithm for PT-nets and step firing policies based on linear rewards of steps, where fixing the reward of elementary transitions is part of the synthesis problem. The simplicity of the algorithm supports our claim that the proposed approach is practical.KeywordsPetri netsstep firing policystep transition systemregionssynthesis problem

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.