Abstract

AbstractThe synthesis of semiconductor–metal (S–M) heterostructures comprising semiconducting (S)‐transition metal dichalcogenides (TMDs) and metallic (M)‐TMDs via chemical vapor deposition (CVD) has emerged as a highly promising avenue for achieving low contact resistance in TMD‐based devices. However, CVD‐grown S–M heterostructures are mainly focused on non‐degenerate semiconductors, despite degenerate semiconductors also being essential for semiconductor technology, such as negative differential resistance (NDR) device. In this study, a degenerate‐S–M heterostructure, Nb‐doped‐WS2–NbS2, is synthesized via CVD with a liquid‐metal precursor. Optimizing the growth parameters, such as growth temperature, precursor ratio, and H2 content in the mixture gas, affords the desirable degenerate‐Nb‐doped‐WS2–NbS2 heterostructure. Raman and photoluminescence spectroscopies, transmission electron microscopy, and energy‐dispersive spectroscopy clearly clarify the doping signal and layer structure of the heterostructure. A growth mechanism has been proposed using in‐plane and vertical models based on structural analysis. Electrical transport measurements reveal degenerate p‐type behavior in the Nb‐doped‐WS2. In the Nb‐doped‐WS2–NbS2 degenerate‐S–M heterostructure, the device flows about twice as much on‐state current as that by an Nb‐doped‐WS2/Cr contact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.