Abstract

Reduction of sodium permanganate with sodium iodide in aqueous solutions has been investigated systematically. The products formed have been characterized by X-ray diffraction, wet-chemical analysis, and surface area and magnetic susceptibility measurements after firing at various temperatures. The results reveal that the sodium content x in the reduction products NaxMnO2+δ depends strongly on the reaction pH and mildly on the relative concentrations of the reactants. Na0.7MnO2+δ obtained at pH>11 followed by firing at T>500°C adopts the P2 layer structure (hexagonal) with cation vacancies arising from a δ≈0.3. Na0.7MnO2+δ crystallizing in a distorted P2 structure (orthorhombic) without cation vacancies (δ≈0) could be obtained by annealing the hexagonal Na0.7MnO2+δ (δ≈0.3) in N2 atmosphere around 600°C. While the orthorhombic Na0.7MnO2+δ (δ<0.05) is stable during ion-exchange reactions with lithium salts at 25≤T≤180°C, the hexagonal Na0.7MnO2+δ (δ≈0.3) transforms to spinel-like phases due to the presence of cation vacancies. Na0.5MnO2+δ obtained at a controlled pH of 9.3 adopts a metastable layer structure on firing at 500°C and a tunnel structure isostructural with Na4Mn4Ti5O18 on firing at T≥600°C. The tunnel structure is stable to ion-exchange reactions without transforming to spinel-like phases. In addition, washing the reduction products with various organic solvents before firing at higher temperatures is found to influence the reaction kinetics, composition, and crystal chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.