Abstract

Nanostructured mesoporous manganese oxides were easily prepared by mixing KMnO4 with ascorbic acid in an aqueous solution under ambient conditions. The obtained manganese oxides were identified as having an α-MnO2 tunnel structure composed of an edge-shared network of [MnO6] octahedra. TEM observations revealed that the obtained MnO2 materials had three-dimensional frameworks which consisted of homogeneous nanoparticles with sizes of ca. 5 nm. Nitrogen sorption analyses showed that these MnO2 nanoparticles exhibited a type IV isotherm, indicating a mesoporous character. Large surface areas up to 284 m2 g−1 were recorded. The electrochemical performances of the synthesized α-MnO2 nanoparticles as supercapacitor electrode materials were studied using cyclic voltammetry and galvanostatic charge−discharge cycling in a three-electrode system at a potential range from 0 to 1.0 V vs a saturated calomel electrode in 0.5 M sodium sulfate solution. The result showed that mesoporous MnO2 with three-dimensional frame...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.